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Abstract

The problem of sorting n integers from a restricted range [1..m], where m is
superpolynomial in n, is considered. An o(nlog n) randomized algorithm is given.
Our algorithm takes O(n log log m) expected time and 0(n) space. (Thus, for m -
nv ) we have an 0(n log log n) algorithm.) The algorithm is parallelizable. The
resulting parallel algorithm achieves optimal speed up. Some features of the algorithm
make us believe that it is relevant for practical applications.

A result of independent interest is a parallel hashing technique. The expected
construction time is logarithmic using an optimal number of processors, and Search-
ing for a value takes 0(l) time in the worst case. This technique enables drastic
reduction of space requirements for the price of using randomness. Applicability of
the technique is demonstrated for the parallel sorting algorithm, and for some parallel
string matching algorithms.

The parallel sorting algorithm is designed for a strong and non standard model of
parallel computation. Efficient simulations of the strong model on a CRCW PRAM
are introduced. One of the simulations even achieves optimal speed up. This is
probably a first optimal speed up simulation of a certain kind.

*Part of this work was conducted while this author was visiting the University of Maryland.
tPartially supported by NSF grant CCR-890649 and ONR grant N00014-85-0046.
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Abstract

The problem of sorting n integers from a restricted range [1..m], where m is super-
polynomial in n, is considered. An o(n log n) randomized algorithm is given. Our al-
gorithra takes 0(nloglog m) expected time and 0(n) space. (Thus, for m = npolylog(n)

we have an O(nloglogn) algorithm.) The algorithm is parallelizable. The resulting
parallel algorithm achieves optimal speed up. Some features of the algorithm make us
believe that it is relevant for practical applications.

A result of independent interest is a parallcl h"hing technique. The expected
construction time is logarithmic using an optimal number of processors, and Searching
for a value takes 0(1) time in the worst case. This technique enables drastic reduction
of space requirements for the price of using randomness. Applicability of the technique

is demonstrated for the parallel sorting algorithm, and for some parallel string matching
algorithms.

The parallel sorting algorithm is designed for a strong and non standard model of
parallel computation. Efficient simulations of the strong model on a CRCW PRAM are
introduced. One of the simulations even achieves optimal speed up. This is probably
a first optimal speed up simulation of a certain kind.

1 Introduction

Consider the problem of sorting n integers drawn from a given range [1..m]. A new ran-
domized algorithm for the problem is presented. Its expected running time is O(n log log m)

using O(n) space. The algorithm is parallelizable. The resulting parallel algorithm achieves

optimal speed up. The result implies o(n log n) expected time and linear space for m < 2 'n .

"Pnrtially supported by NSF grant CCR-8906,19 and ONR grant N0001,1-85-0046.



More specifically, for m = n ° k (for any constant k > 1) we have 0(n log log n) expected
time and 0(n) space. No such result is known for deterministic sorting, suggesting the follow-
ing fundamental open problem : Is this an instance where randomization defeats determinism
for sorting? The algorithm seems to be practical.

The paper employs two Algorithmic techniques:

1. A first randomized parallel hashing technique, which achieves optimal speed up and takes
expected logarithmic time, is presented. The parallel hashing technique enables drastic

reduction of space requirements in quite a few parallel algorithms for the price of using
randomness. The technique is used in the parallel sorting algorithm. Such (serial) technique

is also demonstrated in the serial sorting algorithm, The new parallel hashing technique,
that results in trading space ,oi randomness, is likely to have additional applications. We
actually demonstrate it with a few examples.

2. The parallel sorting algorithm is designed for a strong and non standard model of parallel
computation. New simulations of the strong model on a CRCW PRAM are introduced.

Using one of the simulations the parallel sorting algorithm runs in optimal speed up also on
a CRCW PRAM. Designing algorithms for strong and non standard models of computation
and then translate them into standard models is a traditional methodology in computer
science. We expect our parallel simulations to be helpful in this respect. The simulations
are efficient: one of them even preserves optimal speed up.

1.1 Extant work

Sorting is a fundamental problem that has received much attention. [Knu73] gives several
algorithms for sorting n objects drawn from an arbitrary totally ordered domain in 0(n log n)
time. There are also optimal parallel sorting algorithms in logarithmic time [AKS83] [Col86].
For the decision-tree model the 0(n log n) time serial upper bound is best possible [AHU74].

Because of the central role that the sorting problem plays in computer science, numerous
papers are devoted to study opl.. .nities for improving this time bound to o(n log n). One
approach is to consider idealized '1 l non standard) versions of the RAM model; as, for

instance, in [KR84] and [PSS0], wtitre very large words are assumed. The practicality of
such an assumption is unclear. Another approach is to focus on instances of the sorting
problem, where the input consists of integers drawn from a restricted interval [1..m]. For
m = 0(n) the known Bucket Sort algorithm applies. It solves the problem in 0(n) time.
For m = poly(n)1 the variant of the Bucket Sort algorithm, called Radix Sort, runs in 0(n)
time [Knu73]. More precisely, Radix Sort runs in 0(kn) time for m = n . Thus, a natural
extension of the Radix Sort would result with an o(n log n) time algorithm for m < n°(Iog9) .

We use poly(n) to denote "polynomial in n", and polylog(n) to denote "polynomial in log n".



However, for m = n"(l1-9 ' ) Radix Sort does not improve on the O(n log n) time bound.

The second approach was studied for parallel computation as well. Rajasekaran and
Reif gave an optimal randomized parallel algorithm in logarithmic time on an arbitrary-
CRCW for m = nlogcn, for any constant c > 1 [RR89]. The integer sortinT algorithm of
Rajasekaran and Reif cannot be extended for m p. ynomial in n. For m =; n), Hagerup
provided an O(log n) time and O(n'+") space (fo: iy fixed c > 0) parallel aigorithm, using
n log log n/log n priority-CRCW processors [Hag8 7]. No optimal parallel algorithm is known
for this range. Our sorting algorithm clearly belongs in the second approach.

Using data structures presented by van Emde Boas, Kaas and Zijlstra (vEBKZ77], John-
son [Joh82] dealt with priority queues problems, where the priorities are drawn from the
integer domain [1..m]. A corollary of his result is an O(n log log m) time and O(mlI/ c) space
algorithm for sorting, where c > 0 is a constant. Johnson recognizes the problem with the
space requirements of the algorithm, and writes that the algorithm is not practical and only
of theoretical interest.

Kirkpatrick and Reisch [KR84] presented an algorithm, based on a range reduction tech-
nique, that has the same complexity bounds as Johnson's algorithm. They state that the
algorithm is of little practical value due to both large constants, that are hidden in the
asymptotic bounds, and storage requirements.

The following open question, quoted from Kirkpatrick and Reisch ([KR84]), captures
an important aspect of our sorting results: "For what ranges of inputs can we construct
practical o(n logn) integer sorting algorithms?". The present paper provides only partial
answers to this question, and more work is still needed in order to resolve this question.

The issue of trading space for randomness using random hash functions belongs in the
folklore of serial algorithms. For instance, the survey paper [GG88] demonstrates such
considerations for hashing large alphabets for string algorithms such as the suffix tree data
structure. However, for parallel algorithms this survey mentions only deterministic methods.
This immediately suggests an implicit open problem.

Recently, [DadH89 described a dynamic data structure (dictionary) that using random-
ization supports the instructions insert, delete, and lookup, and that can be implemented in
parallel. Time bounds of the form O(n') using < n1- processors, for some fixed e > 0, are
given. However, no time bounds of the form O(polylog(n)) are claimed.

Several works have been previously done on relations between PRAM models. The
interested reader is referred to the surveys of [EG88] [KR88 [VisS3a. Randomization was
previously used in the context of parallel simulations by [KU86] [KRS88] [MV84] [Ran87].



1.2 More on our results

As model of computation for the parallel algorithms, we use mostly the concurrent-read
concurrent-write parallel random access machine (CRCW PRAM) family. The members
of this family differ by outcome of the event where several processors attempt to write
simultaneously into the same shared memory location. In the common-CRCW all these
processors must attempt to write the same value (and this value is written). In the arbitrary-
CRCW one of the processors succeeds, but we do not know in advance which one. In the
priority-CRCW the smallest numbered among the processors succeeds. The above three
CRCW models are considered standard. Next we mention two non standard models. In the
min-CRCW PRAM the processor that tries to write the minimum value succeeds. In the
fetch&add-CRCW PRAM the values are added to the value already written in the shared
memory location and all sums obtained in the (virtual) serial process are recorded. Finally,
in an exclusive-read exclusive-write (EREW) PRAM simultaneous access of more then one
processor into the same shared memory location is not allowed.

A parallel aigorithm achieves optimal speed-up if its time xprocessor product matches the
number of operations of the fastest serial algorithm for the problem. Typically, we will state
our parallel results in the following form: "x operations and t time". Throughout this paper,
this will always translate into "t time using x/t processors". The papers [EG88], [KRS88],
(KR88] and [Vis83] overview research directions on parallel algorithms. All of them concede
that achieving optimal speed-up, or at least approaching this goal, is a crucial property for
parallel algorithms that are intended to be practical. A secondary (but very important) goal
is to minimize parallel time. Another critical practical concern is space requirements. These
guidelines led us in designing the algorithms of the present paper.

Our (main) randomized sorting algorithms are presented as follows. We first present in
Section 2 a deterministic algorithm that takes O(n log log m) time and uses O(mlc) space,
for any fixed c > 1. A parallel version of this deterministic algorithm takes 0(log n) time
and 0(mi /c) space, for any fixed c > 1, using n log log m/log n processors (optimal speedup).
This parallel algorithm is designed for the non-standard min-CRCW processors.

The second element in our presentation is described in Section 3. A randomized parallel
hashing scheme is presented. It is optimal and takes logarithmic time. Specifically, let W
be a given set of n numbers from an arbitrary large domain [1..mJ. We show how to find
a one-to-one mapping F : W - R, where JR = 0(n), by a randomized algorithm on the
arbitrary-CRCW PRAM. This mapping is computed in 0(log n) expected time, using '
processors. Evaluation of F(x), for each x E W, takes 0(1) worst case time. The connection
to the sorting results is as follows. We show how to use these hash functions in order to
reduce the space requirements in both the serial and parallel algorithms to only 0(n) space.
The penalty is that now we have randomized algorithms rather than deterministic. For the
parallel algorithm, the parallel time increases to 0(log n log log m) while, the operation count
does not increase (asymptotically) on the miri-CRCW model.
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The third element in our presentation is described in Section 4. Simulations of the
min-CRCW PRAM model by weaker models are presented. Some of the simulations are
randomized. Some simulations apply also to the fetch&add-CRCW model.

Denote a CRCW PRAM with a shared memory of size S as CRCW(S) PRAM. In the
following, we list some upper bounds for simulating one step of an n-processor min-CRCW(S)
PRAM:

* 0(logn) expected time on an n-processor arbitrary-CRCW(S + 0(n)) PRAM (op-
timal speedup).

* O(logn) time on an n -nrocessor priority-CRC W(O(S + nl+')) PRAM (e > 0).log nt

* O(log log m) time on an n-processor arbitrary-CRCW(O(mS)) PRAM, where m is an
upper bound for the value that can be written to a memory cell by the min-CRCW
PRAM.

The first result is an improvement over a previously known result [EG88] where there
was a restriction that the memory addresses being used by the simulated min-CRCW are of
at most O(log n)-bit size. The result can be extended to simulating one step of a fetch&add-
CRCW PRAM. We are not aware of similar (i.e., optimal simulation) results even for sim-
ulation of the (relatively weaker) priority-CRCW PRAM by an arbitrary-CRCW PRAM.
The last two simulations are deterministic.

Combining the optimal simulation from Section 4, the parallel hashing scheme in Section
3 and the algorithm in Section 2 we derive a randomized parallel algorithm for sorting
n integers from the range [l..m] on an arbitrary-CRCW that achieves O(log n log log m)
expected time, O(n log log m) expected number of operations and O(n) space.

Not only the space efficient parallel sorting result can benefit from the simulations. Recall
the original min-CRCW PRAM sorting algorithm of Sec. 2. Together with some of these
simulations, we get the following deterministic sorting results on standard PRAM models: (1)
O(log n log log m) time and 0(mc) space (with any fixed > 0) using ,'loglogn priority-CRCWlog n

processors; and (2) O(logn) time and O(m ) space (e > 0) using n(log 101M)2 arbitrary-CRCWlog n

processors.

Some of the ideas we use in the deterministic algorithms of Section 2 go back to [vEBKZ77].
These ideas were inspired also by the algorithms of [Hag87] and [Joh82]. Johnson's algo-
rithm has the same complexity as our deterministic serial algorithm. However, our sorting
algorithm has two advantages: it is simpler and parallelizable.

The proposed parallel hashing scheme may be a useful tool for parallel algorithms that
use large space. We demonstrate this with several algorithms (in addition to our sorting



algorithm) for which the space requirement is large. By using the proposed parallel hashing
scheme, they become efficient and possibly practical.

There are applications that relate to combinatorial algorithms on strings. If the alphabet
is large then a naming assignment procedure for substrings is essential to avoid large space.
Such deterministic procedure, due to [GG88], takes O(n log n) operations and evaluation of
a name takes O(log n) time. (We actually referred earlier to the same procedure.) Using our
parallel hashing scheme, the naming assignment takes O(n) expected number of operations
and evaluation of a name takes 0(1) time in the worst case.

Another application is in the construction of suffix trees. Known parallel algorithms for
this problem require 0(na+f) space [AIL+88] or 0(n log n + m2 ) space [GG88] where n and
m are the lengths of the text string and the pattern string respectively. Space requirements
in both algorithms can be reduced to O(n) and O(n log n), respectively, in exchange for
randomization and an O(log n) increase in time (but no change in number of operations).

The parallel hashing scheme may be used to reduce the space in Hagerup's sorting al-
gorithm [HagS7] from 0(n' +t) to O(n) in exchange for randomization and an O(loglogn)
increase in time (but no change in number of operations). The parallel hashing scheme is
also used in the optimal simulation in Section 4.

Recall that we use the non standard min-CRCW model in Section 2. Note that we do
not advocate this model as an alternative for existing "acceptable" theoretical models for
parallel computation. The methodological attitude here is: (1) design the algorithm on the
min-CRCW model, and (2) show later how to simulate this model on more acceptable ones.

Postscript. After all results in the present paper have been achieved and a first draft
has been distributed, we found out that very recently Bhatt et al. [BDH+89] designed
independently a parallel deterministic integer sorting algorithm which is related (though,
not identical) to the basic construction of Section 2.1 below. Using a new list ranking
algorithm they were even able to reduce the time to O(log n/log log n+log log m) maintaining
optimal speed up. However, none of the randomized and only part of the deterministic space
reductions ideas of the present paper appear there. Finally, we note that we do not see
how to use their results for further improving our randomized results. This is since the list
ranking part is not the main bottleneck for improving our space-efficient randomized sorting
algorithm.

2 The Deterministic Algorithm

We consider the following problem:

Input: Sequence .41],....x[n] of distinct integers drawn from the domain [1..m], for some
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integer m. Problem: Sort the sequence. (Formally, compute the permutation 7r of {1,..., n}
such that [7r(1)], ... , x[7r(n)] is sorted in non-decreasing order.)

In Section 2.4 we discuss ways for withdrawing the distinction assumption.

For presentation purposes, we falsely assume that the sequence x[1], ..., x[n] is given in
the following redundant form. There is a domain array of bits D[1..m] so that D[i] = 1 if
the value of some element x[j] is i and D[i] = 0 otherwise. Given bit D[i] = 1 we define the
smallest il > i such that D[ii] = 1 to be the right neighbor of x[i].

This neighborhood relation translates easily to the values of the input sequence: the
domain right neighbor drn[i] of x[i] is the element x[j] = rnin{x[k] : x[k] > x[i]}. The array
drn defines a linked list, where the elements preceding x[i] in the linked list are smaller than
x[i] and the elements succeeding x[i] are larger. The distance from the beginning of the list
is the rank of x[ij relative to the input elements.

We solve the sorting problem in two steps:

(a) Compute the domain right neighbor of each index i.

(b) For each element x[i], compute its rank r in the linked list defined by the drn, and let
ir(r) be i.

Step (b) can be (trivially) done in O(n) time or in parallel time O(log n) and optimal speed
up using a the List Ranking algorithm ([AM88]), [CV86], [CV88], [CV89]). Therefore, our
main concczn is solving thc domain right neighbor problem. For simplicity we assume that
m = 2' for some integer t > 1. The domain right neighbor, as defined above, is the nearest
neighbor from the right. We will also need a definition of the domain left neighbor, dln[i], of
element x[i]: the element x[j] = max{x[k] : x[k] < x[i]}.

2.1 Algorithm for finding Domain Nearest Neighbors

The algorithm is recursive. The main effort is in defining precisely the problem that is being
solved recursively. The recursive algorithm will provide solutions for the problems of finding
left and right domain nearest neighbors. For each element the recursive algorithm separately
treats the domain right neighbor and the domain left neighbor computations. This is done
by duplicating each element x[i] into a left copy x1 [i] and a right copy x,[i]. Intuitively,
copy x,[i] is "responsible" for finding the domain right neighbor and xdi] is "responsible"
for finding the domain left neighbor. Initially, xj[i] = x[i] and Xr[i] = X[i].

In addition, two auxiliary copies are added .,[n + 1 and x,[n + 1]. Copy x,[n + 1] = 1
is the domain left neighbor of the smallest input element. Similarly, copy x1[n + 1] = m is



the domain right neighbor of the largest input element. (Note that at this stage only for
i = n + 1, x,[i] is not equal xz[i].) We assume, without loss of generality, that the input
elements are from [2..m - 1].

Informally, our algorithm works as follows: The input elements are from an interval
I. Interval I is partitioned into small intervals, defining local problems of domain nearest
neighbors searches. For each subinterval Ik, at most two elements (smallest left copy and
largest right copy) might not have their neighbors in Ik. Such elements are collected into the
global sets GR and GL. Thus, a problem on interval I is reduced recursively into several
local problems on subintervals Ik and one global problem. By choosing Ik to be of size 0j-/-
(for all k), we have that all local problems and the global problem are with intervals of size

The input for the recursive algorithm includes two sets L and R, whose values belong to
an interval I of integers. I is of the form a + [1..m'], i.e., I = {a + 1, a + 2,..., a + m'} for some
a and rn'. Set L will always represent a non-empty subset of the left copies and set R will
always represent a non-empty subset of the right copies. Each element in set L searches for
its left neighbor within set R. This left neighbor is defined as the largest element in R which
is smaller than it. Similarly, each element in set R searches for its right neighbor defined as
the smallest element in L which is larger than it.

Initially, the interval I is [1..m] (i.e., a = 0 and m' = in), L is {xj[lJ, ..., x[n + II} and R
is {xx[1],...,X,[n + 1]}.

The recursive algorithm DNN

Input: L, R and I, where L and R are nonempty sets and I = a + (1..m] is an interval of integers. We refer

to m = I as the size of the problem.

A processor stands by each element in L and each element in R.

if m = 2 (comment: the situation for a recursive problem for which m = 2 is characterized in Corollary 2)

then Declare the element of L to be the right neighbor of the element of R and the element
of R to be the left neighbor of the element of L.

else

(1) Partition set L into q = \/m subsets Lo, L1, ... , Lq,_ where Lk contains elements (of L)
from the interval Ik = a + k • q + [1..q], for k = 0, ..., q - 1. Similarly, partition set
R into q = vr subsets Ro, R1 , ..., R,_1 where Rk contains elements (of R) from the
interval Ik = a + k. q + [L..q], for k = 0,...,q- 1.

(2) Let ak be the smallest element in Lk. If ak is less than or equal to the smallest element
in ; k then: (a) Select the integer k into the new set GL (integer k represents element



ak and will be referred to as ak). (b) Remove ak from Lk.

Similarly, let bk be the largest element in Rk. If bk is greater than or equal to the
largest element in Lk then: (a) Select the integer k into the new set GR (integer k
represents element bk and will be referred to as bk). (b) Remove bk from Rk.

(3) Do the following recursive calls: (a) For each pair of nonempty (local) subsets Lk and
Rk solve the problem for an input consisting of Lk, Rk and Ik. (b) If (global) sets GL
and GR are nonempty then solve the problem for an input consisting of GL, GR and
J = a + [O..q - 1].

Comments:

" If the smallest (resp. largest) element of L U R in Ik is in L (resp. in R) then its left
(resp. right) neighbor is not in 1k. We collect the elements from L (resp. from R)
whose left (resp. right) neighbor is not in Ik into the global set GL (resp. set GR).

" The algorithm advances to the deepest level of recursion and simply terminates (with-
out any backtracking).

" All recursive calls of the algorithm are performed simultaneously in parallel.

2.2 Correctness

Proposition 1 Let x[j] be the left neighbor of x[i]. Then for each level of the recursion the
following properties hold:

(a) The values of all elements in L are distinct and the values of all elements in R are
distinct.

(b) xl[iJ and xUj are both represented in the same recursive sub-problem.

(d) x,[j is the left neighbor of xi[i].

(e) Each element is represented in ezactly one recursive sub-problem.

(f) Set L is nonempty if and only if set R is nonempty.

The proof of Proposition 1 is given in Appendix A.

Corollary 2 If a problem with input L. R and I is of size 2 then Li= RI= I and the
element in R is the left neighbor of the element in L.
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Proof: Assume that xi[i] E L and that x[j] is the left neighbor of x[i]. Let I = [a, a + 1] for
some integer a. Following from property (b) in Proposition 1, xj] E R. Thus, from property
(c) we have x,[U] = a and xj[i] = a + 1. If L > 1 then by property (a) a second element can
only be x,[i'] = a (for some i' # i). However, following property (c) its left neighbor must
be < a, contradicting property (b). Similarly, R may contain only one element. g

Corollary 3 Suppose that initially m, the size of the interval from which the input elements
are drawn, is 22" for some integer t > 1 (and t = log log m). Consider a recursive problem
at recursion level t. The interval I from which the input elements for such recursive problem
are drawn consists of two successive integers. That is, for some integer x, I = x + [1..2].
Furthermore, L = {x + 2} and R = {x + 1} and x + 2 is the right neighbor of x + 1.

2.3 Complexity and implementation

We start by discussing the complexity of algorithm DNN and later state the sorting results.

Lemma 4 Given are n elements with distinct values from the interval of integers [1..m]. (1)
Algorithm DNN works serially in O(n log log m) time and 0(m) space. (2) Algorithm DNN
works in O(log log m) time and 0(m) space, using n processors on a min-CRCW PRAM.

Proof: The size of interval I for each recursive sub-problem is bounded by ,/m. Therefore,
D(rn), the depth of the recursion, satisfies D,(m) D(v/ + 0(1), implying D(m) =
O(log log m). For each level of the recursion we need to perform at most O(n) operations
and therefore the total number of operations is 0(n log log m).

To finish deriving the serial result we "remember" for each element in each level of the
recursion its original index in the initial sets L and R. The space needed for all subproblems
together in each level of the recursion is 0(m). Since we can reuse the space for the highest
level of the recursion, we get a total of O(m) space, as well. Item (1) of the lemma follows.

We proceed to the parallel result. Initially, we assign one processor to each copy of
each element (i.e., each element of the original sets L and R). This assignment remains
throughout the entire algorithm.

For step (2), we need to have in a, (resp. bk), for k = 0, .., q - 1, the minimum (resp.
maximum) element's value over all the elements that belong to Lk (resp. Rk). We already
argued (implicitly item (1) of the lemma' that sequentially this can be trivially done in O(n)
time. In parallel, step 2 can be done in 0(1) time, using n processors. Here is where we
take advantage of the min-CRCW PRAM, where if several processors try to write into the
same memory location, only the one with the minimal value succeeds. Item (2) of Lemma 4
follows. *
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2.4 Extensions

Withdrawing the distinctness assumption.

We assumed that all elements in the input sequence are distinct. The purpose of this
subsection is to extend algorithm DNN and show that this assumption is not necessar'y. It
is trivial to achieve distinctness by replacing each input element x[i] by the pair < x[i],i >.
The problem is that this enlarges the required space to 0(nm) Fortunately, this will not
cause any problem in deriving the randomized sorting results in Section 4.1.

However, the problem remains if we are interested in deterministic results. The remainder
of this subsection is devoted to giving alternative extensions that are less space consuming.

We allocate processor i to element i, for each 1 < i < n. For each element i, let s(i) be
the smallest index of an element equal to element i (formally x[i] = x[s(i)] and for j < s(i),
x[i] x[j]). We make use of a bulletin board BB[1..m] (this term was previously used by
Galil [Gal84]).

Step 1. Processor i writes i into location BB[x[i]]. Since the min-CRCW PRAM is used
location BB[x[i]] will contain s(i). Step 1 uses 0(n) space.

Only processors (and their respective elements) that succeed in writing their index
participate in Step 2. Formally, these are all elements i for which s(i) = i. All
elements participating in Step 2 are distinct.

Step 2. Apply the DNN algorithm. As a result we get the domain right neighbor relative
to all elements participating in Step 2.

Step 3. Associate the pair < s(i), i > with element i, for each i, and impose a lexicographic
order on these pairs. Apply the DNN algorithm with respect to these pairs. (It is easy
to map these pairs into the domain of integers [1..n 2 ], preserving the lexicographic
order. So Step 3 needs 0(n 2) space.)

Step 4 derives the desired right neighbor relation from the outcome of Steps 2 and 3.
Let x[k] be the right neighbor of x[s(i)], as a result of Step 2, and let < s(j),j > be
the right neighbor of the pair < s(i), i >, as a result of Step 3.

Step 4.

if s(i) = s(j)

then x[j] is the right neighbor of x[i]

else x[k] is the right neighbor of x(i].

We conclude,
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Lemma 5 Given are n elements with values from the interval of integers [1..m]. (1) The
extension of algorithm DNV works serially in O(n log log m) time and O(m + n2) space. (2)
The extension of algorithm DNN works in O(log log m) time and O(m + n2) space, using n
processors on a min-CRCW PRAM.

Reducing (deterministically) the space requirements.

For simplicity, let us assume that m > n2 . The reason is that our results extend known
results mostly when this assumption holds.

Lemma 6 Given are n elements with values from the interval of integers [1..m]. Algorithm
DNN can be further enhanced to: (1) run serially in O(n log log m) time and O(mXc) space,
where c > 1 is any fixed constant. (2) run in O(loglogm) time and O(m ) space (for any
constant c > 1), using n processors on a min-CRCW PRAM.

Proof: The output of the extended DNN algorithm defines a linked list of the elements
defined by the right neighbor relation. This linked list is stable in the following sense: if
x[i] = x[j] for some i < j then element i precedes element j in the linked list. A consequence
is that an iterative method, in the spirit of Radix Sort, can be applied. Thus, given an
algorithm of time T and space S, for each integer c > 0, we can have a DNN algorithm with
O(cT) time and O(S/c) space. *

Our primary concern in this section is the sorting problem. So, if we add the missing list
ranking step to the DNN algorithm we get,

Theorem 1 Given are n elements with values from the interval of integers [1..m], our sort
ing algorithms achieve the following results: (1) O(n log log m) serial time and O(m ) space,
where c > 1 is any fixed constant. (2) O(logn) parallel time and O(mc) space (for any
constant c > 1), using '1o009 processors on a min-CRCW PRAM.-- log n

If the input is from a range polynomial in n then we have the same complexities as in
Hagerup's algorithm [Hag87]. The range for which our algorithm gives better results than the
best known algorithms is for nlog log n < m < 2n'(), where < denotes smaller asymptotically.
Thus, for example, for m = nP"Lylt g(n) we have:

Corollary 7 n integers from the range [1 ..nlogk n] (for every constant k > 0) can be sorted in:

(1) O(n log log n) serial time and O(n o ) space, for any constant c > 1; and (2) O(log n)

parallel time and O(n C ) space, for any constant c > 1, using 'I" processors on a,i-RK'R41 log n

m-ROW PRA4M.
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3 Trading Space for Randomness

In this section we show how to use randomization in order to reduce the space complexity
of the algorithms to O(n). The randomization is of the "Las-Vegas" type algorithm. That
is, some of the steps of the space reducing algorithm are based on randomized moves and it
never errs.

Recall that in each recursive level of algorithm DNN, there are O(m) variables ak and bk.
However, in each level of the algorithm only O(n) of these variables are actually used. For
a given level denote by W the set of ak and bk variables that are being used (IWI = 0(n)).
The deterministic implementation in Sec. 2 requires 0(m) space for the ak and bk variables.
The key idea here is to randomly select a hash function for mapping the set W into O(n)
space. In order to avoid collisions, we shall use a perfect hash function (which is a one-to-one
function).

Remark. For the serial algorithm, much simpler hash functions would suffice in order to
reduce the space to O(n). From now on we concentrate on the parallel algorithm. Based on
this, the implementation for the serial algorithm will be straightforward.

A basic procedure for constructing a perfect hash function is presented. Its expected
running time is logarithmic and its expected number of operations is linear. Specifically, we
prove in Subsection 3.1 the following theorem:

Theorem 2 Let W be a set of n numbers from the range [1..m], where m + 1 = p is prime.
Suppose we have n processors on an arbitrary-CRCW PRAM. A one-to-one function F:
W - [1..5n] can be found in O(logn) expected time. The evaluation of F(x), for each
x E W, takes 0(1) arithmetic operations with numbers from [1..m].

We show later that Theorem 2 leads to the following:

Corollary 8 A. Algorithm DNN (and its extension) takes O(log n log logm) expected time
and O(n) space, using n processors on a min-CRCW PRAM. B. The same performance
is obtained for the problem of sorting n integers drawn from a domain of size m.

3.1 Constructing a parallel perfect hash function

In this subsection we prove Theorem 2.

Given is a set W of n numbers from the range [1..m], where p = m+ 1 is prime. The hash
function F maps W into the range [l..5n]. We use the fundamental perfect hash function
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F that was suggested by Fredman, Koml6s and Szemer~di [FKS84], as described below. An
efficient parallel construction of F is then presented.

Define fk : W - [1..n] as fk(x) = 1 + (kx mod p) mod n where k is a parameter
from [1..m]. Let B(k,j) be the set of values in W that are mapped by fk into j, i.e.
B(k,j) = {x E W: fk(x) = j}. Also, let b(k,j) = IB(k,j)I and Sk = = b(k,j) 2. For
each j = 1,... ,n, define fk,,. : B(k,j) --. [1..r 2] as f,r,(X) = 1 + (k'x mod p) mod r 2 where
k'= k'(j) is a parameter from [1..m] and r = b(k,j). Construction of the hash function F
will be based on two steps:

(a) Select k for which Sk < 5n.

(b) For each j, select k'(= k'(j)) for which fk',b(k,j) is one-to-one.

After all parameters k and k'(j)'s (for all j = 1,...,n) are appropriately selected, the
one-to-one function F is derived by first applying fk and then fk'(j),b(kj) for a proper j.
Specifically, F is constructed as follows. For each set of elements B(k,j), b(k,j)2 space is
assigned. Let Mi be the prefix sum =j b(k,J) 2. Then [1..Mi] is an array assigned to the first
i sets B(k, 1), ... , B(k, i). The function fk maps each element in B(k,j) into [(Mj_ I + 1)..Mj].
F(x) is evaluated as follows:

(a') Evaluate j = fk(x).

(b') F(x) = AI, 1 + fk,,b(k,j)(X).

Step (a) guarantees that the overall space M, = Sk is linear (< 5n). Step (b) guarantees
that the mapping is one-to-one. It remains to show how to implement steps (a) and (b).

Fact 1 ([FKS84]) For at least one-half of the values k in [1..m], Sk < 5n. Thus, for a
randomly selected k, Sk < 5n with probability > .

Define k' = (k'(j)) to be good if fk'(j),b(kj) is a one-to-one function (over B(k, j)).

Fact 2 ([FKS84]) For each j in [1..n], at least one-half of the k's in the range [1..m] are
good.

To construct F, we apply the following randomized procedure:

(a) Repeatedly select k at random until Sk < 5n.

(b) For each j, repeatedly select k' = k'(j) at random until it is good.

14



Implementation of Step (a).

Following fact 1, the expected number of iterations in (a) is < 2. We first show how
to check whether Sk < 5n. Given b(k,j) for all j, the evaluation of the prefix sums M=
E=I b(k, j) 2 (for i = 1,..., n) and of Sk = M,, can be done by using the Prefix Sums algorithm
of Cole and Vishkin [CV86] [CV89] in 0(log n/log log n) time and 0(n) operations. The

evaluation of b(k,j) for each j is done as follows:

(1) Sort the n numbers in {fk(x) : x E W} into an array C[1..nJ.

(2) Find for each j the rightmost (resp. leftmost) index ii (resp. i2) for which C[ii] = j
(resp. C[i2] = j). Let b(k,j) be ii - i2 + 1.

Step (2) can be trivially done in 0(1) time using n processors. To do step (1), note first

that the range of fk is the integer interval [1..n]. Thus, we may employ the integer sorting
algorithm due to Rajasekaran and Reif:

Lemma 9 ([RR89]) n keys from the range [1..n] can be sorted using ' arbitrary-CRCW

PRAM processors in 0(log n) time, with probability > 1 - -L, for any constant a > 0.

Following the above we have that each iteration in step (a) of the construction of F takes
0(n) expected number of operations and logarithmic expected time. We conclude

Lemma 10 Given is a set W of n numbers from the range [1..m] and some k E [1..m].
Checking whether Sk < 5n can be done in 0(log n) expected time, using ' arbitrary-CRCW
processors.

Corollary 11 Step (a) in the construction of F takes 0(logn) expected time, using n

arbitrary-CRCW 
processors.

Implementation of Step (b).

In step (b) the procedure to check whether k' is good for j is easy when using the
arbitrary-CRCW PRAM. Our goal is to select a good k' for each j within a total of 0(n)
operations and logarithmic time. The difficulty is that Step (b) should be done independently
for each j (j = 1,...,n). We prove

Lemma 12 A good k' = k'(j) can be found for all j, j = 1,.., n, in 0(log n) expected time,
using n processors.
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Proof: To prove the lemma we show three facts: (I) the expected maximum number of
trials in selecting a good k' for j (over j = 1,.., n) is O(iog n); (II) the expected total work
of selecting good k's for all j (j = 1,.., n) is 0(n); and (III) the processors can be allocated
according to (a) and (b) to yield an O(log n) expected time parallel procedure for step (b)
in the construction of F, using n processors.

Let ti be the number of trials before a good k' is found for j, and let t = max{tj :j =
1,... ,n}.

Claim 13 E[t] <_ 2([logn] + 1).

Proof: Let N, be the number of js for which a good k' was not found in the first i trials;
i.e. N, = I{J : tj > i}j. Consider the following Bernoulli trials: A success in the i'th trial is
defined to be the case that the number of good k's found in the i'th trial is at least N; that
is, a success is when N+j _ -1v . Following fact 2, Prob[success] _ .1 2

Let x be the number of trials until the ([logn] + 1)'th successful trial. It is easy to see
that t is bounded by x and therefore E[t] :_ E[x] :_ 2([logn] + 1). m

Claim 13 proves fact (I). To prove fact (II) we first show

Claim 14 E[tj] < 2 for each j.

Proof:
00 

00 00 1

E[tj] = i . Prob[tj = i] < Z + = Z 2
i=1 i== i1 k=1

changing the order of summation, we get

00001 001
EEZ k E =I-12.
i=l k=i i=

Let opj be the number of operations required for selecting a good k' for j. Since op =

tjb(k,j) we have E(op,] = E[t1]b(k,j) < 2b(k,j) and the total number of operations is
expected to be E[F_>=, opj] < 2 F'_I b(k, j) = 2n.

It remains to give an implementation for the processors allocation. The selection of the
numbers k'(j) is done in phases. In each phase a new number k' is selected and tested, for
each j such that no good k'(j) has been found. An element x E B(k,j) is called active if no
good k'(j) has yet been found (for j). Let N' be the number of active elements in phase i.
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We use a standard idea. Initially, N1 is n. As long as N,' > n/log n, we simply compact
all N[ active elements of phase i into an array of length N[ prior to the phase. Consider the
first phase j for which N, < n/log n. The compacted array of size N , will be used for all
subsequent phases.

Finally, a trivial application of Brent's scheduling theorem will provide actual assignment
of processors to jobs.

Specifically, let VAL[1..5n] be an array. The perfect hash function F, being constructed,
will map each element of the input set W into array VAL.

Less informal implementation of Step (b).

i := 1; N' := n.

While N,' > n/log n do
(All active elements in W are in array ACTIVE[1..N] sorted by the B(k,j) to which
they belong)

Phase i

1. The first element in an active B(k,j) selects at random a k'(j) value.

2. Each active element x evaluates its hashing value F(x) using fk,(j) and writes its
original value x into VAL[F(x)] (using the arbitrary CRCW convention).

3. Each active element x checks whether its value is written in VAL[F(x)]. If not it
"disqualifies" the k'(j) for its B(k,j) set.

4. All active elements belonging to B(k, j) sets whose k'(j) was disqualified remain
active in phase number i + 1. Their number is N[+1.

5. Using a prefix sums algorithm, compact them into array ACTIVE[1..N[+]

6. i i + 1.

end while

Denote j = i. Nj is at most n/log n.

While there is j for which good k'(j) has not been found do
(All active elements in W are in array ACTIVE[1..Ni], sorted by the B(k,j) to which
they belong)

Do steps 1-4 and 6 as above.

end while

17



Complexity Following fact 2, E[N,'] < -r- Therefore, the expected total work is Fj E[Nj]  -
2n. The time in each phase in part 1 is dominated by the compaction procedure (step 5).
Using the Prefix Sums algorithm each phase takes Ol t°- - g,,- ) time. Using arguments similar
to those in Claim 13, E[j] < 2 loglog n where j is the number of phases in the first part.
The expected number of phases for part 2 is 0(log n) based on Claim 13.

Using Brent's theorem [Bre74] step (b) can be implemented in 0(logn) expected time,
using n processors on an arbitrary-CRCW PRAM. u

Having Lemma 10 and Lemma 12, Theorem 2 immediately follows.

3.2 Applications

As a motivation for the previous subsection we stated Corollary 8.

Proof of Corollary 8. In algorithm DNN (and its extension) there are log logim phases.
Separately for each phase we hash the 0(n) variables ak and bk. Part A of the Corollary 8
follows. Part B is trivial. g

We mention here some examples of algorithms for which the parallel hashing scheme can
be used.

One application relates to the construction of suffix trees. This is probably the most
important data structure for algorithms on strings. Applications of this data structure
are reviewed in [Apo84]. [GGS8] indicate that the space requirement of the suffix tree
construction is the source of inefficiency in quite a few parallel preprocessing algorithms. The
parallel algorithm by [AIL+88] for constructing suffix tree requires 0(log n) time, 0(n log n)
operations and 0(n +c) space (for any 0 < e < 1), where n is the length of the input string.
Using the parallel hashing scheme, the space requirement decreases to 0(n), while the time
increases to expected 0(log2 n) and the number of operations remains 0(n log n) (as expected
value rather than worst case). Suppose we have a relatively short string, whose length is
m, and a long string, whose length is n. [GG88] considered instances where suffix trees
are needed only for supporting queries requesting comparison among substrings of the short
string and the long string. Their algorithm takes 0(log m) time, 0(n log m) operations and
0(n log n + in2 ) space. Using the parallel hashing scheme, the space requirement decreases
to 0(n log n), the time increases to expected 0(log n log m) and the (expected) number of
operations remains 0(n log m).

Section 2 in the approximate string matching survey of [GG88] discusses various ways for
hashing many different substrings of a certain string. This is a fundamental problem that
arises in some string matching automaton-like algorithms. They consider both serial and
parallel computation. Given a string x, the size of the alphabet is relevant to the assignment
of names to different substrings of x. In principle, different names should be assigned to
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different substrings of a given string x. In cases where the number of different substrings is
n, a name should be a number from [1..n]. Name assignment il a mapping from a possibly
large domain into [1..n]. Galil and Giancarlo propose an assignment procedure that takes
0(n log n) operations where IJx = n [GG88]; subsequently, it takes O(log n) time to find the
name of a substring. Using our parallel hashing scheme, the assignment procedure takes
0(n) expected number of operations and 0(log n) expected time; finding a name for a given
substring takes 0(1) worst-case (!) time.

Lamdan and Wolfson [LW88] use hashing for object recognition. Their method is parallel
in a straightforward manner, except for their hash table construction. The parallel hashing
scheme can be useful there.

Hagerup's algorithm for sorting integers from polynomial range [Hag87] has the drawback
of using 0(nl +' ) space (for any fixed e > 0). By using the parallel hashing scheme its space
complexity decreases to 0(n). The expected number of operations remains the same and
the time increases from 0(log n) to expected 0(log n log log n).

Finally, the parallel hashing scheme is used to get an optimal randomized simulation of
th2 inin-CRCW PRAM by arbitrary-CRCW PRAM, as given in Section 4.

Comment on finding a prime in a given range.

We assumed above that m + 1 is a prime. To withdraw this assumption we should give
a procedure that, given some m, finds a prime p > m such that log log p = 0(log log m); i.e.
p E [(M + 1)..n l*gk -], for some constant k > 0. We have some preliminary results on this.
In particular, we know how to find p in 0(n) operations. The parallel time complexity is
0(log3 M) with high probability. To see the significance of such a procedure we should refer
to the way in which the sorting algorithm is viewed. If the algorithm is for a fixed range
[1..m] then finding p is just a preprocessing which may be done only once (p can then be
part of the algorithm's description). We may, however, use the sorting algorithm as an input
sensitive algorithm with no a priori knowledge about the range. Specifically, after reading
the input values the actual range may be found by using a maximum finding procedure. In
this case, an efficient procedure for finding a prime p is desired.

4 Simulating the min-CRCW PRAM

In this section we deal with simulations of the min-CRCW PRAM by weaker (and more ac-
ceptable) models of parallel computation. We show applications of some of these simulations
for the parallel Sorting algorithms.

Our most interesting simulation result is the following:
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Simulation result 1 One step of an n-processor min-CRCW PRAM can be simulated by
an n -processor arbitrary-CRCW PRAM in 0(log n) expected time (optimal speed up) and
0(n) additional space.

Before proceeding to prove this simulation result, we make some general comments on
how the result should be read and what has to be proved. These comments apply to other
simulation results below, as well. The difference between the min-CRCW PRAM, being
simulated, and the simulating arbitrary-CRCW PRAM lies in the way write conflicts are
resolved. For this reason our proof need to be concerned only with a 'write' stage of the min-
CRCW PRAM on the arbitrary-CRCW PRAM. The space requirements for the simulating
arbitrary-CRCW PRAM be read as follows: (1) it needs as much space as the min-CRCW
PRAM; in addition, (2) 0(n) space is needed.

Lemma 15 Consider the problem of simulating a single 'write'stage of an n-processor min-
CRCW PRAf on an arbitrary-CRCW PRAM. This problem can be reduced in 0(log log n)
time and 0(n) operations (on an arbitrary-CRCW PRAM), to the problem of Sorting n
integers from the range [1..n]. The reduction uses 0(m) space, where m is the size of the
memory in the simulated min-CRCWV PRAM.

Proof: Suppose the memory of the min-CRCW PRAM is an array M[1..m] of size m.
We denote the processors of the simulated rnin-CRCW PRAM by MP, 1 < i < n. As
usual we will refer to the computation on the simulating arbitrary-CRCW PRAM in terms
of operations, and suppress the issue of allocation of these operations to processors of the
simulating machine. We will make one exception to this, in a case where such allocation
requires special care. A typical 'write' stage of n min-CRCW PRAM processors can be
viewed as follows. Processor MPi, 1 < i < n, attempts to write value vi into target address
M[ti]. Let Si be the set of elements j such that tj = ti. The definition of the min-CRCW
PRAM implies that vi is written into M[tJ] if vi = min{vj : j E Si}.

The simulation makes use of a bulletin board BB[1..m] that enables direct communication
between all elements with the same target address. It works as follows:

a. For each processor MPi, write its index i into memory location BB[tj]. Arbitrarily, some
index i' E Si, succeeds and i' is written into BB[t,].

The main idea is to "label" each processor in Si by the same label i' and group all
processors in Si together into a successive subarray (Step (b)). The simulation of the
min-CRCW PRAM is carried out by determining the minimum value vi over each such
successive subarray (Step (c)).

b. LABEL[i] - BB[t,]. Sort array LABEL into an array G[1..n].

Identical LABEL values occupy successive subarrays of G. The beginning and end of
each such subarray can be easily determined.
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c. For each such successive subarray in G, find the minimum vi over {vj : LABEL[j] is in
the subarray}, and write vi into memory location M[til.

Step (a) can be done in 0(1) time and O(n) operations using the arbitrary-CRCW
PRAM. Step (c) can be done in time O(loglogn) and O(n) operations.

We comment on how to actually perform step (c) using n/lo7 log n ij:ocessors within
O(loglogn) time. Step : emplvy t:.- 6( ) ">" ine optimal speed up algorithm
for finding the minimum among I elements given in an array of length 1, as in Shiloach
& Vishkin [SV81]. The processors allocation for Step (c) is done as follows. In order to
simplify the explanation, assume that we have 3n/lcglog n processors. We assign three
processors to each successive subarray (called interval) of length log log n in array LABEL.
These three processors will participate in the minimum computation of all subarrays that
intersect their interval. If there is a subarray that ends in the interval, we assign to it the
first processor. If there are subarrays that are contained in the interval, we assign to all
of them the second processor. If there is a subarray that begins in the interval, we assign
to it the third processor. If the interval is fully contained in a subarray assign to it the
first processor (and the other two will remain idle). Each processor of each interval clearly
finishes finding the (local) minima for the intersection of the interval with each intersecting
subarray in O(log log n) time. The first and third processors may then participate in a global
minimum computation of an appropriate subarray. Such global computation will apply the
Shiloach-Vishkin algorithm for each subarray separately.

The space complexity is dominated by the array BB whose size is m. The values written
in the memory locations BB[t] in Step (a) are from the range [I..nl. Therefore, the sorting
problem of step (b) is indeed of elements from this range only. The Lemma follows. I

A major drawback of the above reduction is the potentially large space that it might
require. (Recall that this space is in addition to the memory which is as in the simulated
min-CRCW.) However, the space consuming array BB is only used in step (a). It is easy
to see that the parallel hashing scheme from section 3 can be applied here. As a result the
additional space which is used by the reduction is reduced to O(n) while the time complexity
remains the same (up to a constant factor), only expected rather than deterministic, using
the same number of processors.

Thus, Simulation Result 1 follows from Lemma 15, Lemma 9 and Theorem 2.

Comments:

1. Simulation result 1 improves a similar theorem in the survey of Eppstein and Galil
lEG881 (the min-CRCW is called there strong-CRCW), where it is assumed that addresses
can be written in at most O(log n) bits. Recall that Simulation result 1 does not impose any
size restriction on the memory to be used by the simulated machine.
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2. Lemma 15 can be extended to hold in O(log n/log logn) times for a fetch&add step of
a fetch&add-CRCW PRAM. This extension, Lemma 9 and Theorem 2 imply the following
extensions of simulation result 1: A single fetch&add step of n processors on a fetch&add-
CRCW PRAM can be simulated by " arbitrary-CRCW PRAM processors in O(logn)
expected time and O(n) space.

Simulation Result 1 states that a single step of an n-processor min-CRCW can be simu-
lated with O(n) expected number of operations by an arbitrary-CRCW PRAM. To see what
can be done deterministically we first state the following lemma due to Hagerup:

Lemma 16 ([Hag87]) For any fixed e > 0, n integers of size polynomial in n can be sorted in
O(log n) time by a priority-CRCW PRAM using 0(nIolgg) processors and 0(n1 +' ) space.Slog n

Following Lemma 15 and Lemma 16 we have

Simulation Result 2 A single step of n processors on a min-CRCW PRAM with memory
size S can be simulated by n prioritv-CRCW PRAM processors in O(log n) time and
O(S + n + ' ) space (for any fixed c > 0).

Comment 3. Simulation Result 2 can be extended for a fetch&add-CRCW PRAM similarly
to Comment 2 above.

Two more simulation results are stated here. They are based on [CDHR88], as explained
in Appendix B.

Simulation Result 3 An n-processor nin-CRCW that uses memory of size S, where each
memory cell contains a log m-bit word, can be simulated by an n-processor arbitrary-CRCW
PRAM with a slowdown of O(log log m), using 0(mS) space.

Simulation Result 4 An n-processor rmin-CRCW that uses memory of size S, where each
memory cell contains a log m-bit word, can be simulated by an n log m-processor common-
CRCW PRAM in 0(1) time, using 0(mS) space.

4.1 Applications

In this section we apply some of the simulations to the parallel DNN and Sorting algorithms
and derive complexity results for standard CRCW PRAM models.

Recall that in algorithm DNN there are O(log log rn) phases. Each phase takes 0(1) time
for n min-CRCW processors. Following Simulation Results 1, 2, 3 and 4 we have

Corollary 17 Algorithm DNN and its eztension can be implemented as follows:



* On arbitrary-CRCW in O(log n log log m) expected time, O(n log log m) expected num-
ber of operations and O(n) space.

e On priority-CRCW in O(log n log log r) time, O(n log log m log log n) operations and

O(m') space, for any fixed c > 0.

* On arbitrary-CRCW in O((log log rn)2 ) time, O(n(loglogm)2 ) operations and O(me)

space, for any fixed c > 0.

* On common-CRCW in O(log log m) time, O(n log m log log m) operations and O(m')

space, for any fixed e > 0.

Proof: The first implementation is as follows. Recall that the opening sentence of Section 2.4
explains how to trivially extend the DNN algorithm for non-distinct elements using O(nm)
variables. At each phase of algorithm DNN, Theorem 2 is used to map the O(nm) variables
into O(n) space in O(log n) expected time and O(n) expected number of operations. The
step of the min-CRCW PRAM is then done, using Simulation Result 1, in O(log n) expected
time and O(n) expected number of operations, using 0(n) space. There are O(loglogm)
phases by Lemma 4.

For the other implementations we use the reduced space DNN algorithm of Lemma 6.
Thus, at each phase we implement a step of min-CRCW PRAM with 0(m//2 ) space, for any
fixed e > 0. We use Simulations Results 2,3 and 4 to implement the second, third and forth
implementations, respectively. Note that the values written by the min-CRCW PRAM are
at most 0(mE/2 ). a

Recall that after running algorithm DNN, the Sorting algorithm can be finished by using
the List Ranking procedure. The latter takes O(log n) time, O(n) operations and O(n) space
on EREW PRAM. Thus, Sorting can be implemented with the same complexities as stated
in Corollary 17 except for an increase in time to O(log n) in the last 2 cases.

In particular, the first item in Corollary 17 implies the following parallel sorting result.

Theorem 3 Sorting n integers from the range [1..m] can be done on a randomized arbitrary-
CROW in O(log n log log m) expected time, O(n log log m) expected number of operations and
O(n) space.

5 Conclusion

We gave an o(nlogn) time randomized algorithm for sorting integers drawn from a super-
polynomial range. Our algorithm takes O(nloglogm) expected time and O(n) space. A
parallel version of the algorithm achieves optimal speed up.
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Sorting is a fundamental problem in computer science, therefore we expect these results
to have applications in quite a few problems. We outline one possible direction for such
applications. Consider a problem that is defined on an m by m grid of points, and suppose
an algorithm for the problem needs sorting of points along the x or y axes. Our integer
sorting algorithm is likely to be helpful.

An open question is whether a space efficient deterministic Integer Sorting algorithm in
o(n log n) time can be found, for integers drawn from a superpolynomial range [1..n polylog(n)].

The second main topic is the parallel hashing technique. It achieves optimal speed up and
takes expected logarithmic time. The parallel hashing technique enables drastic reduction
of space requirements for the price of using randomness. The technique was used in the
parallel sorting algorithm and in the simulation results; its applicability to other problems
was demonstrated.

An open question: design an optimal parallel speed up hashing scheme F : W -+ [1..O(n)]
that takes sublogarithmic time.

A third topic of independent interest is the efficient simulation of strong models of CRCW
PRAM by more acceptable ones, and the methodology of designing parallel algorithms for
the strong models with automatic simulations on acceptable models. We expect to see more
applications of this approach in the design of parallel algorithms.

Acknowledgment: We wish to thank Yehuda Afek, Noga Alon, Eli Gafni, Zvi Galil and
Hanoch Levy for stimulating discussions.
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A Proof of Proposition 1

This appendix gives a proof of Proposition 1 for completeness of the presentation. We suggest
not to include this appendix in a published version of the paper.

Proposition 1 Let x[j] be the left neighbor of x[i]. Then for each level of the recursion the
following properties hold:

(a) The values of all elements in L are distinct and the values of all elements in R are
distinct.

(b) xj[i] and x,[j] are both represented in the same recursive sub-problem.

(c) xzjj] < xN[i].

(d) xr[j] is the left neighbor of xl[i].

(e) Each element is represented in exactly one recursive sub-problem.

(f) Set L is nonempty if and only if set R is nonempty.

Proof:

The proof is by induction on the level of the recursion.

Inductive Base: Trivial.

Induction step:

(a): After step 2 the values of elements in Lk and in Rk are unchanged and therefore, by
the inductive hypothesis on (a), we only need to look at the sets GL and GR. In step 2, for
each k at most one element from Lk is selected into GL, and at most one element from Rk
is selected into GR. These (possibly) selected elements are the only ones that are assigned
with the value k.

(b): Following from the inductive hypothesis on (b), before step 1 elements x1 [i] and
x,[j] are both represented in the same recursive sub-problem. Assume that after step 1
xj[i] E Lk and x,[j] E Rk, for some k and k'. If xl[i] was selected into GL, i.e. x1[i] is
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the smallest element in Lk U Rk, then x,.U] was selected into GR, i.e. x,j] is the largest
element in Lk' U Rk,. Otherwise, we have from the inductive hypothesis on (a) and (c)
that x, j] < bk' < xi[i] (before bk, was changed in set GR) which contradicts the inductive
hypothesis on (d). Similarly, if xr[j] was selected into GR then x[i] was selected into GL,
otherwise we have from the inductive hypothesis on (a) and (c) that x,[j] < ak < x,[i], which
contradicts the inductive hypothesis on (d). If both xj[iJ and x,4j] were not selected into GL
and GR, respectively, then k = k' otherwise by the inductive hypothesis on (a) and (c) we
have x,.j] < ak < xj[i] which contradicts the inductive hypothesis on (d). Thus, x,[i] and

x,j] are in GL and GR, respectively, or in Lk and Rk, respectively.

(c): Following from the inductive hypothesis on (b), if x,[i] and x,{j] are in Lk and Rk,

respectively, then their values are unchanged. If they are in GL and in GR, respectively,
then after step 2 x,[i] = k and zr[j] = k' (where after step 1 x,[i] E Lk and x,] E Rk').

Following from the definition of Lk and Rk, in step 1 and from the inductive hypothesis on

(c) we have k < '.

(d): The values of all elements in sets Lk and Rk are unchanged. Thus, following from

the inductive hypothesis on (b) and (d), if x1 [i] E LA and xrU] E Rh then xi] is the left

neighbor of x,[j]. We only need to deal with the case that xj[i] E GL and x,[j] E GR.

Assume, by negation, that there is an element y E GR such that x,[j] < y < x[i]. Clearly,
after step 1 we had xj[i] E LA, x,[j] E Rk' and y E Rk" with k' < k" < k, contradicting the

inductive hypothesis on (d).

(e): Following from the inductive hypothesis on (e), in step (2) each element x1 [i] is either

in Lk for some k or in GL. Similarly, each element xj] is either in Rk' for some k' or in

GR. Thus, in step (3) each element is represented in exactly one recursive sub-problem.

(f): Following from the inductive hypothesis on (b). u

B Simulation Results 3 and 4

This appendix gives a proof of Simulation Results 3 and 4 for completeness of the presenta-
tion. We suggest not to include this appendix in a published version of the paper.

Consider some CRCW machine. We say that a memory cell contains a processor if this

processor has the address of this cell written in a special local register. Each processor

is contained in at most one cell. A cell that contains at least one processor is said to be

non-empty, otherwise it is said to be empty. The Find-First problem of size n is defined

as follows: Given is an array A[l..n], each cell of which is empty or contains exactly one

processor, find the lowest-numbered non-empty cell of A. We similarly define the Extended

Find-First problem of size n: Given is an array A[1..n], each cell of which is empty or contains

one or more processors, find the lowest-numbered non-empty cell of A.
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Chlebus, Diks, Hagerup and Radzik [CDHR88] show how to simulate priority-CRCW
PRAM on weaker CRCW PRAMs. Their simulations are based on solving the Find-First
problem2 . Specifically, a 'write' step of n-processor priority-CRCW is done as follows. For
each memory cell c to which there is at least one processor that attempts to write, a Find-
First problem of size n is defined: A,[i] contains processor Pi if Pi attempts to write into cell
c. The space required for the simulating machine is O(Sn) where S is the size of memory
being used by the simulated priority-CRCW PRAM. Time requirements are discussed later.

Let min-CRCW(S, m) be a min-CRCW PRAM with space S and m being an upper bound
on the values that can be written into the memory cells. A 'write' step of min-CRCW(S, m)
PRAM can be done, similarly to the above, by using S Extended Find-First problems of
size m. For each memory cell c to which there is at least one processor that attempts to
write, an Extended Find-First problem of size m is defined: Ac[i] contains processor Pj if P
attempts to write i into cell c. The space required for the simulating machine is O(Sm). A
'write' step of the min-CRCW(S,m) PRAM can be also reduced to S Find-First problems
of size nm. Specifically, A.[< i,j >] contains processor Pj if Pj attempts to write i into cell
c (here 'lowest number' is with respect to the lexicographic ordering). The space required
for the simulating machine here is O(Snm).

Chlebus et al. show how to solve the Find-First problem of size m on several machines:

Proposition 18 ([CDHR88]) The Find-First problem of size m can be solved as follows:
(a) On arbitrary-CRCW PRAM in O(log log m) time; (b) On common-CRCW PRAM in
constant time, provided that each processor has additional log m processors.

The algorithms in [CDHR88] solve also the Extended Find-First problem since all proces-
sors contained in the same cell act identically (independently of their index). This is enough
when using the arbitrary-CRCW and the common-CRCW PRAMs. Using the above we
have

Simulation Result 3 An n-processor min-CRCW(S, m) PRAM can be simulated by an
n-processor arbitrary-CRCW PRAM with O(log log m) slowdown, using O(mS) space.

Simulation Result 4 An n-processor min-CRCW(S,m) PRAM can be simulated by an
n log m-processor common-CRCW PRAM in 0(1) time, using O(mS) space.

2Fich, Ragde and Wigderson [FRV88] also used the Find-First problem (there called "leftmost prisoner
problem") to simulate priority-CRCW on common-CRCW PRAM.
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